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Abstract
Samples can be prone to ascertainment and attrition biases. The Australian Genetics of Depression Study is a large publicly 
recruited cohort (n = 20,689) established to increase the understanding of depression and antidepressant treatment response. 
This study investigates differences between participants who donated a saliva sample or agreed to linkage of their records 
compared to those who did not. We observed that older, male participants with higher education were more likely to donate 
a saliva sample. Self-reported bipolar disorder, ADHD, panic disorder, PTSD, substance use disorder, and social anxiety 
disorder were associated with lower odds of donating a saliva sample, whereas anorexia was associated with higher odds of 
donation. Male and younger participants showed higher odds of agreeing to record linkage. Participants with higher neuroti-
cism scores and those with a history of bipolar disorder were also more likely to agree to record linkage whereas participants 
with a diagnosis of anorexia were less likely to agree. Increased likelihood of consent was associated with increased genetic 
susceptibility to anorexia and reduced genetic risk for depression, and schizophrenia. Overall, our results show moderate 
differences among these subsamples. Most current epidemiological studies do not search for attrition biases at the genetic 
level. The possibility to do so is a strength of samples such as the AGDS. Our results suggest that analyses can be made more 
robust by identifying attrition biases both on the phenotypic and genetic level, and either contextualising them as a potential 
limitation or performing sensitivity analyses adjusting for them.

Keywords  Attrition · Bias · Genetics · Polygenic · Epidemiology · Recruitment · Cohort study · Selection bias · PRS · 
Depression

 *	 Adrian I. Campos 
	 adrianisaac.camposgonzalez@uq.edu.au

1	 Genetic Epidemiology Lab, Department of Genetics 
and Computational Biology, QIMR Berghofer Medical 
Research Institute, Brisbane, QLD, Australia

2	 School of Biomedical Sciences, Faculty of Medicine, The 
University of Queensland, Brisbane, QLD, Australia

3	 Statistical Genetics Lab, Department of Genetics 
and Computational Biology, QIMR Berghofer Medical 
Research Institute, Brisbane, QLD, Australia

4	 Psychiatric Genetics Lab, Department of Genetics 
and Computational Biology, QIMR Berghofer Medical 
Research Institute, Brisbane, QLD, Australia

5	 Institute for Molecular Bioscience, The University 
of Queensland, Brisbane, QLD, Australia

6	 Child Health Research Centre, The University of Queensland, 
Brisbane, QLD, Australia

7	 Queensland Brain Institute, The University of Queensland, 
Brisbane, QLD, Australia

8	 School of Biomedical Sciences, Queensland Institute 
of Technology, Brisbane, QLD, Australia

9	 Brain and Mind Centre, University of Sydney, Camperdown, 
NSW, Australia

http://orcid.org/0000-0003-3468-8619
http://crossmark.crossref.org/dialog/?doi=10.1007/s00406-022-01527-0&domain=pdf


1360	 European Archives of Psychiatry and Clinical Neuroscience (2023) 273:1359–1368

1 3

Introduction

The Australian Genetics of Depression Study (AGDS) 
is a large cohort study including more than 20,000 par-
ticipants. Recruitment targeted individuals who had been 
diagnosed or treated for depression [1]. The majority 
(75%) of the participants in the study are women. The 
mean age (at the time of recruitment) was 43 years with 
a standard deviation of 15 years. A high percentage of 
the participants (95%) have been diagnosed with depres-
sion, and similar to what is seen in population studies, 
68% of the cohort reported a history of at least one other 
comorbid mental health diagnosis. The AGDS collected a 
vast amount of phenotypic data through online question-
naires, as well as a biological specimen for genotyping. A 
key component of the study was the optional consent to 
linkage of participants' prescription history with the study 
data, as well as the option. These datasets enable a vari-
ety of novel analyses such as corroboration of medication 
self-reports as well as health economics and comorbidity 
analyses. The other key component was obtaining geno-
type data through a spit sample; this was also optional and 
independent of whether consent to linkage was provided.

Public recruitment practices can be prone to biases as 
they indirectly target a portion of the population that consists 
of individuals that are willing to participate in the study. 
Voluntary participation could lead to both over or under-
representation (relative to the population) of exposures [2], 
and outcomes [3]. When this happens, collider bias, an arti-
ficial association between two variables as the product of 
either adjusting for a covariate that is actually an outcome 
of the two variables studied [4], or sampling strategies that 
modify the likelihood of recruiting participants with specific 
values for the common outcome [5], may occur. This is pos-
sible regardless of whether selection occurs for entry into the 
study, or for the completion of optional modules in subse-
quent waves of data collection. We refer to this phenomenon 
as attrition. Previous studies have shown that attrition can 
influence measures of association [6] by creating a bias in 
the prevalence and incidence of the variables studied.

Large cohorts and genetic studies are not free of sam-
pling and attrition biases. Evidence of such include the 
observation of unexpected autosomal heritability of sex 
in cohorts with active recruitment, which could possibly 
reflect differences in genetic factors driving participation 
in males and females [7], and genetic factors associated 
with participating in optional subsections of surveys of 
the UK-Biobank [8, 9], all of which may lead to incorrect 
inferences in downstream analyses. Identifying potential 
sources of selection bias is necessary to perform statistical 
adjustments such as propensity score weighting, standardi-
zation or matching to a relevant population [10].

A sample with genotype data can, in theory, be compared 
with a reference sample to identify unmeasured sources of 
selection. That is, assuming that selection is based on a her-
itable trait, as well as the existence of a sufficiently powered 
PRS for said trait. For example, a sample ascertained for 
individuals with higher education should have a higher mean 
educational attainment (EA) PRS when compared to a ran-
dom sample from the same population. Assuming EA was 
not measured in this sample, EA PGS could be compared to 
a population sample to identify ascertainment and standard-
ize or weight to adjust for potential biases. We believe this 
strategy may be possible when coupled with standardization, 
because we expect a well powered PRS to serve as a proxy 
for the unobserved trait and expect any ancestral/population 
selection in PRSs to be relatively small. Thus, genetics holds 
promise to enable assessment of selection factors provided 
a sufficiently good PRS can be estimated, and a reference 
dataset is available. It remains an open question whether 
this theoretically sound approach will be practically useful.

The objective of this study was to evaluate selection 
biases in two aspects of participation in the ADGS: donat-
ing a saliva sample for genotyping and agreeing to link-
age to medical prescription records (PBS linkage) in the 
AGDS. We did this by investigating sociodemographic and 
psychiatric differences between participants who donated a 
saliva sample compared to those who did not. We further 
tested whether there is evidence of a heritable component 
underlying agreement to PBS linkage, as it would evidence 
whether any genetic correlate are expected. We also investi-
gated sociodemographic, clinical, and polygenic differences 
between participants who agreed to PBS linkage and those 
who did not. As part of this study, we aim to investigate 
if genetic data could be used to identify sources of selec-
tion had these been not observed and to exemplify potential 
biases of downstream analyses using simulations based on 
the AGDS data. Finally, we compare our findings across the 
two participation measures and with studies of participation 
in other cohorts such as the UK-Biobank to assess whether 
the same factors underlie participation.

Methods

Sample recruitment

The Australian Genetics of Depression Study recruited 
22,424 Australian participants through two avenues: a 
mail-out to patients who had at least 4 prescriptions for 
antidepressants in the previous 5 years (14%) and a media 
campaign to recruit patients who had received a diagnosis 
of depression from a doctor, psychiatrist or psychologist 
(86%). Potential participants were directed to the AGDS 
website (https://​www.​genet​icsof​depre​ssion.​org.​au), and 

https://www.geneticsofdepression.org.au
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informed consent was gathered prior to data collection 
through online questionnaires. The AGDS inclusion cri-
teria included (1) reporting that they had been treated for 
depression by a health professional (2) agreeing to donate 
a saliva sample for genotyping (although only 72.5% actu-
ally did so). Full details for the AGDS can be found else-
where [1].

Among the phenotypes collected, participants con-
firmed whether they had taken any of the ten most com-
monly prescribed antidepressants in Australia. For each 
antidepressant taken, we gathered data on antidepressant 
efficacy and experienced side effects. Data on demograph-
ics, clinical history of psychiatric disorders as well as per-
sonality traits (neuroticism and extraversion scores) were 
also collected. Furthermore, willing participants provided 
optional consent to record linkage of their Pharmaceutical 
Benefits Scheme (PBS) prescription and Medical Benefits 
Scheme (MBS) records, which could be used to validate 
medication self-reported data, assess concurrent medica-
tions, and infer comorbidities.

In this study, we focus on (1) whether participants 
agreed to record linkage of their PBS records for research 
purposes as the outcome of interest, and (2) whether they 
donate a saliva sample for DNA genotyping. The full list 
and details of instruments used for AGDS phenotyping 
are available at https://​bit.​ly/​3y72l​yg. All participants pro-
vided informed consent prior to participating in the study. 
The QIMR Berghofer Medical Research Institute Human 
Research Ethics Committee approved all questionnaires 
and research procedures for the AGDS under project num-
ber P2118.

Genotyping imputation and quality control

Upon completion of the core questionnaire, participants 
were mailed a GeneFix GFX-02 2 mL saliva DNA extrac-
tion kit (Isohelix plc) to use at home and then returned by 
mail for subsequent genotyping. The AGDS sample was 
genotyped using the Illumina Global Screening Array (GSA 
V.2.0). Genotype data were cleaned by removing unknown 
or ambiguous map position, strand alignment, high missing-
ness (> 5%), deviation from Hardy–Weinberg equilibrium, 
low minor allele frequency (< 1%), and GenTrain score < 0.6 
variants. Imputation was performed through the Michigan 
imputation server web service using the HRCr1.1 reference 
panel, as the majority of the cohort were of European ances-
try. Genotyped individuals were excluded from polygenic 
risk score (PRS) analyses based on high genotype missing-
ness, inconsistent and unresolvable sex, or if deemed ances-
try outliers from the European population, based on princi-
pal components derived from the 1000Genomes reference 
panel (defined as > 6SD from the PC1/PC2 centroid).

SNP‑based heritability

We employed genome-based restricted maximum likelihood 
(GREML) as implemented in GCTAv.1.91.7 [11] to estimate 
the proportion of variance in consent to record linkage (on 
the observed scale) explained by measured genetic differ-
ences (SNP-based heritability). This approach leverages a 
genetic-relatedness matrix (GRM) and restricted maximum 
likelihood to partition the variance of a phenotype into a 
genetic and environmental component [12]. The underlying 
logic is to assess whether genetic covariation explains a sig-
nificant proportion of the covariation of a trait. If so, then we 
expect the ascertained trait can be identified using genetic 
data. In a large sample, a GWAS of participation followed 
by genetic correlation analyses could be performed. None-
theless, for the sample size of the AGDS this strategy is not 
feasible, but PRS could potentially help in identifying these 
traits. We note that this strategy will only work if the asso-
ciation between selection and the PGS is driven through the 
PGS (focal) phenotype; associations for other reasons could 
fail to identify ascertainment or could even induce its own 
confounding if adjusted for. For this study, a GRM based on 
a subset of unrelated (genomic relatedness cut-off < 0.05) 
individuals of European ancestry was employed to identify 
evidence for a genetic component to consenting to record 
linkage of PBS records.

Polygenic risk scores (PRS)

We computed PRS in order to test to what extent the genetic 
risk for traits that showed a phenotypic association or have 
previously been linked to attrition in other studies (see “Dis-
cussion” section), predicted consent to PBS record linkage. 
For the PRS predictions, we excluded European ancestry 
outliers and used only one member from groups of related 
individuals (genomic relatedness cut-off < 0.05) to avoid 
confounding from cryptic relatedness, as this violates the 
independence assumption of classical logistic regression. 
We estimated PRS for educational attainment [13], neuroti-
cism [14], major depressive disorder [15], bipolar disorder 
[16], schizophrenia (SCZ) [17], and anorexia nervosa [18] 
using GWAS summary statistics without sample overlap 
with the AGDS cohort. SBayesR was used to estimate 
the joint GWAS effect sizes adjusting for the correlation 
between SNPs [19]. Prior to estimating PRS, we excluded 
low imputation quality (r2 < 0.6), MAF < 0.01, non-auto-
somal, and strand-ambiguous variants. Imputed genotype 
dosage data were used to calculate PRS by multiplying the 
variant effect size by the dosage of the effect allele. Finally, 
the total sum was calculated across all variants. This proce-
dure was performed using Plink 1.9 [20]. A relevant follow-
up question is how much of the SNP-based heritability is 
explained jointly by these genetic factors. To estimate the 

https://bit.ly/3y72lyg
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proportion of SNP-based heritability explained by these 
PRS and whether there is any residual genetic variance for 
selection, a secondary GREML analysis including all nomi-
nally significant PRS (SZC, MDD, and anorexia) as a fixed 
effect was performed, and the SNP-based heritability of both 
models (with and without PRS) were compared using the 
formula

where VG0 is the genetic variance component estimated in 
the null model (i.e., without PRS) and VGadj is the same 
estimate but of the model including PRS for SCZ, MDD and 
anorexia as fixed effects. This approach is likely to yield an 
underestimate as the GRM used to estimate SNP-based her-
itability is constructed using SNPs also included in the PRS.

Illustrating‑biased associations in the AGDS

To illustrate a possible scenario whereby selection induces 
bias, we simulated a collider variable for anorexia. That is, 
a variable that has no real association with anorexia, but 
would show a spurious association upon conditioning on 
agreeing to PBS linkage. We can envision such a scenario 
if we are performing complete data analysis of a variable 
obtained from PBS records. These analyses would inher-
ently be stratified (i.e. focus only on participants that agreed 
to linkage). We simulated a variable (named collider here) 
influencing agreeing to PBS linkage independently from 
anorexia. We varied the effect size of the collider on agree-
ing to PBS linkage, covering the range of selection effect 
sizes observed by our study (OR range from 1.002 to > 1.8), 
conditional on anorexia to ensure independence, and assess 
whether we identify a spurious association between anorexia 
and the collider. The actual effect of the collider on agree-
ing to PBS linkage was determined using a logistic regres-
sion. This simulation was repeated 100 times for each effect 
size and each type of analysis (see below). Finally, we used 
post-stratification matching [10] based on rates of anorexia 
and average of the collider to show how the bias can be 
alleviated. Simulations were performed based on the AGDS 
data and using the R and the MatchIt library. The types of 
analyses performed were standard—negative control using 
all data and not conditioning on agreeing to linkage; condi-
tional—as positive control testing for association between 
anorexia and collider while conditioning on agreeing to 
linkage; stratified—performing the association test only 
within participants that agreed to linkage; stratified matched 
analysis—where the sample that agreed to linkage is post-
stratified to match the whole sample in terms of prevalence 
of anorexia and mean collider; stratified subsampled—same 
as stratified but ensuring the same sample size as that of the 

1 −
VGadj

VG0

,

stratified matched subsamples (to ensure results are not due 
to power differences).

Statistical analyses

Logistic regression was used to examine the association 
between our outcomes (i.e., consent to record linkage and 
providing a saliva sample) and variables of interest includ-
ing age, sex, educational attainment, psychopathology, and 
PRS. The non-genetic regressions were adjusted for sex and 
age at study enrolment. Sensitivity regressions using genetic 
variables including age, sex, and the first 20 genetic princi-
pal components were performed to test whether associations 
with participation may be explained by the relationship of 
selection on age, sex and population stratification. Results 
assessing the proportion of SNP-based heritability used lin-
ear mixed-effects models fit via restricted maximum likeli-
hood [12]. Nominally significant results are defined as those 
with p < 0.05 and statistical significance was defined after 
Bonferroni correction for multiple testing.

Results

Demographic factors and samples description

Table  1 shows demographic information across AGDS 
participants who did or did not consent to record linkage. 
We also contrast demographic factors between participants 
who donated a saliva sample for genotyping and those who 
did not. Participants agreeing to record linkage consent 
were, on average, older (OR = 1.016; 95% CI [1.01–1.02] 
per year of age). Female participants were less likely to 
provide consent for record linkage (OR = 0.69; 95% CI 
[0.63–0.74]). Overall, the cohort’s educational attainment 
is high (e.g., ~ 25% of participants reported having a post-
graduate degree). We did not observe a significant associa-
tion between educational attainment and providing consent 
for record linkage (OR = 1.02; 95% CI 0.99–1.05). Being 
male (OR = 1.13; 95% CI [1.05–1.23]), older (OR = 1.012; 
95% CI [1.010–1.015] per year of age), and having higher 
educational attainment (OR = 1.18; 95% CI [1.14–1.21] per 
educational category) were all associated with donating a 
saliva sample for genotyping.

Associations with psychiatric and personality traits

The association between self-reported lifetime psychiat-
ric diagnosis and differential consent for record linkage 
or biological sample are shown in Table 2. Participants 
with self-reported diagnosis of bipolar disorder (OR = 1.31 
95% CI [1.17–1.46]) were more likely to consent to record 
linkage. In contrast, participants who reported a diagnosis 
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of anorexia (OR = 0.57 95% CI [0.50–0.64]) were less 
likely to consent to record linkage. There was a nomi-
nally significant association between consent to record 
linkage and participants reporting a lifetime diagnosis of 
substance use disorder (OR = 1.32 95% CI [1.11–1.56] 
or anxiety disorder (OR = 0.92 95% CI [0.87–0.98]). For 
the outcome of donating a saliva sample, the following 
were associated with lower odds of donation, bipolar dis-
order (OR = 0.85 95% CI [0.77–0.94]), ADHD (OR = 0.71 

95% CI [0.62–0.82]), panic disorder (OR = 0.77 95% CI 
[0.7–0.85]), PTSD (OR = 0.83 95% CI [0.76–0.9]), sub-
stance use disorder (OR = 0.79 95% CI [0.68–0.91]) and 
social anxiety disorder (OR = 0.82 95% CI [0.75–0.89]). 
Conversely, participants reporting a lifetime diagno-
sis of anorexia showed higher odds (OR = 1.84 95% 
CI [01.51–2.05]) of providing a saliva sample (Fig. 1). 
Most of these associations remained similar regardless of 
adjustment for age and sex. However, neuroticism became 

Table 1   Relationship between demographics and consent for record linkage and provision of a genetic sample

Whole sample Record linkage No record linkage Saliva sample No Saliva sample

Age in years
Mean (SD) 43.17 (15.42) 44.3 (15.26) 39.95 (15.42) 43.7 (15.3) 41.9 (15.7)
Sex
Female 16,790 (75%) 12,072 (72%) 4718 (28%) 12,166 (72.5%) 4624 (27.5%)
Male 5474 (24.5%) 4383 (80%) 1091 (20%) 3937 (71.9%) 1537 (28.1%)
Education
No formal education 12 (0.06%) 7 (0.05%) 5 (0.01%) 7 (0.04%) 5 (0.11%)
Primary school 53 (0.3%) 44 (0.3%) 9 (0.2%) 38 (0.24%) 15 (0.36%)
Junior secondary school 1162 (5.75%) 893 (5.9%) 269 (5.3%) 862 (5.4%) 300 (7.2%)
Senior secondary school 1714 (8.5%) 1232 (8.1%) 482 (9.6%) 1252 (7.8%) 462 (11.1%)
Certificate or diploma 4793 (23.7%) 3692 (24.3%) 1101 (21.9%) 3755 (23.4%) 1038 (24.9%)
Degree 7055 (34.9%) 5206 (34.3%) 1849 (36.8%) 5617 (35.1%) 1438 (34.5%)
Postgraduate degree 5399 (26.7%) 4088 (27.0%) 1311 (26.1%) 4485 (28.0%) 914 (21.9%)

Table 2   Association between psychiatric traits and participation

a p < 0.0028 significant after multiple testing correction
b Effect per unit of raw score. Results adjusting for age and sex are available in Supplementary Table S1

Disorders Consent to record 
linkage OR (95% CI)

Consent to record 
linkage p-value

Saliva sample OR (95% CI) Saliva sample p-value N cases

Bipolar disorder 1.31 (1.17–1.46) 1.51e−06a 0.85 (0.77–0.94) 0.001a 2057
Anxiety disorder 0.92 (0.87–0.98) 0.007 0.92 (0.87–0.98) 0.007 12,131
Schizophrenia 1.22 (0.87–1.7) 0.255 0.78 (0.58–1.05) 0.100 195
ADHD 0.98 (0.85–1.14) 0.828 0.71 (0.62–0.82) 2.37e−06a 900
Agoraphobia 0.92 (0.76–1.13) 0.437 0.81 (0.67–0.98) 0.03 488
Premenstrual dysphoric disorder 0.9 (0.74–1.09) 0.292 0.87 (0.72–1.06) 0.17 504
Anorexia nervosa 0.57 (0.5–0.64) 3.97e−19a 1.76 (1.51–2.05) 3.92e−13a 1135
Bulimia nervosa 0.7 (0.6–0.81) 4.06e−06a 1.16 (0.98–1.36) 0.083 771
Autism spectrum disorder 0.92 (0.73–1.16) 0.468 0.85 (0.68–1.06) 0.149 356
Panic disorder 0.89 (0.81–0.99) 0.027 0.77 (0.7–0.85) 1.39e−07a 2092
Obsessive compulsive disorder 0.81 (0.72–0.92) 0.001a 0.93 (0.82–1.05) 0.253 1277
PTSD 0.93 (0.85–1.01) 0.087 0.83 (0.76–0.9) 6.63e−06a 3130
Personality disorder 1.02 (0.89–1.15) 0.816 0.83 (0.74–0.94) 0.003a 1284
Substance use disorder 1.32 (1.11–1.56) 0.001a 0.79 (0.68–0.91) 0.001a 829
Social anxiety disorder 0.86 (0.78–0.94) 0.001a 0.82 (0.75–0.89) 1.18e−05a 2483
Seasonal affective disorder 0.99 (0.82–1.18) 0.881 0.88 (0.74–1.05) 0.161 629
Neuroticismb 0.99 (0.98–1.01) 0.310 0.98 (0.97–0.99) 0.002 NA
Extraversionb 0.99 (0.98–1) 0.051 1 (0.99–1.01) 0.575 NA
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positively associated with consent to record linkage after 
adjustment (Supplementary Table S1).

Genetic factors

This section focuses on consenting to record linkage 
amongst those who provided a DNA sample. Necessarily, 
genetic analyses comparing participants who did or did not 
provide a biological specimen are not possible. Amongst 
those who provided a biological sample, 79% consented to 
PBS, implying a binomial variance of 0.79 (1–0.79) = 0.17 
on the observed scale. The GREML analysis suggested the 
presence of a genetic contribution to the likelihood of con-
senting to record linkage. The SNP-based heritability on the 
observed scale was 0.12 (SE = 0.03, p = 1.1e−7, phenotypic 
variance on the observed scale ~ 0.16). We hypothesised that 
the genetic risk (operationalised as PRS) for the psychiatric 
traits identified above (e.g., bipolar disorder, anorexia, or 
neuroticism) would be associated with differential consent 
for record linkage.

We used logistic regressions to test for association 
between agreeing to PBS linkage and PRS for neuroticism, 
MDD, SCZ, or EA. PRS were validated by first predicting 
the specific trait of interest. All PRS were predictive of their 
respective traits. For example, neuroticism PRS was strongly 
associated with neuroticism score. Although statistically sig-
nificant, SCZ PRS had the lowest evidence for association 
with its cognate trait (p = 2.0e−4; Table 3). Anorexia PRS 
(OR = 0.93 95% CI [0.89–0.97]) and SCZ PRS (OR = 0.91 
95% CI [0.86–0.96]) were associated with lower odds of 
consenting to linkage. However, the latter was not significant 
after adjusting for genetic principal components (Supple-
mentary Table S2). Conversely, MDD PRS was associated 
with higher odds of consent to record linkage (OR = 1.07 
95% CI [1.02–1.11]; Table 3). Using a GREML analysis, 
we estimated that MDD, SCZ, and anorexia PRS accounted 

Fig. 1   Associations with neuropsychiatric traits. Forest plots depict 
odds ratios (OR) and 95% confidence intervals for the association 
between neuropsychiatric traits and, donating a saliva sample (blue 
triangular markers) or agreeing to pharmaceutical benefits scheme 
(PBS) linkage (red circular markers) adjusting for age and sex

Table 3   PRS validation and results of association with consent to record linkage

a Effect sizes (beta or log of the odds ratio) per standard deviation of PRS
b p < 0.0084 (bonferroni corrected threshold)
c Validation association corresponds to logistic or linear regressions predicting a trait using the PRS of that specific trait (e.g. bipolar disorder 
PRS predicting bipolar disorder lifetime diagnosis). R2 for binary traits is calculated as the Nagelkerke pseudo R2

PRS Validation associationc Association with consent to record linkage

Variance 
explained (R2)

Effect sizea Standard error p value Variance 
explained (R2)

OR (95% CI) p value

Major depression – – – – 0.001 1.07 (1.02–1.11) 1e−3b

Bipolar disorder 0.005 0.18 0.03 2.0e−09b 1.06e−5 1.00 (0.97–1.05) 0.75
Educational attainment 0.058 0.28 0.01 1.7e−195b 1.23e−5 1.00 (0.97–1.05) 0.74
Schizophrenia 0.010 0.47 0.13 2.0e−4b 0.001 0.91 (0.86–0.96) 8e−4b

Neuroticism 0.018 0.44 0.03 6.2e−51b 3.5e−4 1.03 (0.99–1.08) 0.06
Anorexia 0.010 0.27 0.04 8.2e−13b 0.001 0.93 (0.89–0.97) 8e−4b
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for around 12% of the SNP-based heritability of consent 
to record linkage (see “Methods” section) which would 
account for around 1.4% of the total phenotypic variance on 
the observed scale. Notably, all PRS were still significantly 
associated with agreeing to record linkage when jointly esti-
mating their effects using GREML (MDD PRS beta = 0.012 
SE = 3.7e−3; SCZ PRS beta =  − 0.013 SE = 4.9e−3; ano-
rexia PRS =  − 9.2e−3 SE = 3.8e−3).

Simulation of a collider for anorexia

We simulated a collider variable that increases the odds of 
a participant agreeing to PBS consent. This would induce 
a spurious association with anorexia (see “Methods” sec-
tion and Fig. 2a). As expected, conditional analyses are 
more likely to detect the spurious association compared to a 
stratified analysis. Nonetheless, stratified analyses should be 
considered more realistic given that they represent studies 
using the PBS data available. Our results suggest that small 
effects on agreeing to PBS linkage (i.e. standardized odds 
ratio of less than 1.03) would result in undetectable collider 
bias with anorexia in conditional and stratified analyses. 
For effect sizes larger than that, a spurious association was 
identified more often than expected by chance (Fig. 2b). For 
reference, factors such as bipolar and obsessive–compulsive 
disorder showed stronger selection effects (ORs = 0.81 and 
1.31, respectively) than those required to induce collider 

with anorexia. We performed follow-up analyses search-
ing for evidence of collider bias with consent. Briefly, we 
performed association analyses between pairs of traits in 
either subsample (PBS or saliva donation) and in the whole 
sample. If an association was identified in the subsample but 
not in the whole sample this could be indicative of collider. 
We found no evidence of such pattern across all pairs of 
psychiatric traits. Finally, post-stratifying the subsample that 
agreed to PBS linkage to match the whole AGDS sample (in 
terms of prevalence of anorexia and mean collider) allevi-
ated the bias within the simulations. This alleviation was not 
due to a reduction in sample size as an analysis subsampled 
to the same size as the matched analysis still showed infla-
tion (Fig. 2b).

Discussion

This study investigated systematic differences between par-
ticipants who consented to record linkage of prescription 
history and those who did not. We also investigated sociode-
mographic differences associated with the decision to donate 
a saliva sample for DNA analysis. Our study is motivated 
by the need to acknowledge and identify differences that 
could limit the generalisability of findings from prescrip-
tion history data, and potentially lead to biased or spurious 
associations. Nonetheless, it is important to reiterate that 

Fig. 2   Simulation illustrates potential collider bias with anorexia. a 
Diagram showing the simulated collider variable exerting a causal 
effect (C) on agreeing to PBS linkage. Note that the effect of the col-
lider is independent of anorexia and we do not expect a significant 
association between anorexia and collider. b Results of 100 simula-
tions for varying levels of collider causal effects. Standard-negative 
control using all data. Conditional analysis—as positive control test-
ing for association between anorexia and collider while condition-

ing on agreeing to linkage. Stratified analysis—performing the asso-
ciation test only within participants that agreed to linkage. Stratified 
matched analysis—where the sample that agreed to linkage is post-
stratified to match, in terms of prevalence of anorexia and mean col-
lider as the whole sample. Stratified subsampled—same as stratified 
but ensuring the same sample size as that of the stratified match sub-
samples. The black horizontal line depicts a 0.05 false positive rate
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representativeness is not necessarily the issue that needs 
addressing. As previously discussed [21], selection will 
induce bias if the variables being studied are causally asso-
ciated with selection.

We illustrate a potential bias simulating a collider to 
anorexia. Our simulations suggested the causal effect of a 
collider (on selection) needs to be moderate to high to be 
detectable in the subsample with PBS data and that post-
stratification matching can largely alleviate the collider bias. 
The analyses using matched data inherently had a lower sam-
ple size, which could explain non-significant associations 
by mere power reduction. We showed this was not likely the 
case as simulations of a conditional analysis subsampled to 
the same size as the matched dataset, still showed significant 
inflation. Although many of the identified associations were 
strong enough to induce collider according to our simula-
tion, it is important to mention that we did not identify evi-
dence of biased associations between pairs of variables that 
were associated with consent to record linkage or providing 
a saliva sample.

We identified factors correlated with participation; future 
studies using AGDS data should take additional caution 
when performing analyses including these traits. For exam-
ple, if we were to observe a significant correlation between 
anorexia PRS and MDD PRS (both associated with partici-
pation) in the subset of the sample with PBS data (implicitly 
conditioning con participation), it would be necessary to 
perform a sensitivity analysis using the whole sample to 
assess whether such an association is due to collider. Below, 
we cover some of the factors identified herein and discuss 
whether these are consistent with other studies.

Educational attainment has been reported to be a relevant 
factor for voluntary participation in medical research [9]. 
In fact, the AGDS has been shown to be a highly educated 
sample compared to the Australian population [1]. Here, we 
identified a moderate association between educational attain-
ment and donating a biological sample, but the relationship 
between educational level and consent to record linkage did 
not reach statistical significance.

A recent study analysed genetic and demographic fac-
tors related to whether UK-Biobank participants shared their 
email for a follow-up questionnaire. Women and individu-
als at high genetic risk for schizophrenia were less likely to 
share their email [8]. While we also identified that females 
were less likely to consent to record linkage, we found no 
association between consent to record linkage and self-
reported schizophrenia diagnosis. Nonetheless, we found 
a significant inverse association between SCZ PRS and 
consent to record linkage, which would align with the find-
ings in the UK-Biobank and suggest our lack of phenotypic 
association to be due to lack of power from the low number 
of participants reporting schizophrenia or due to potential 
unreliability of a self-reported measure. Increased genetic 

risk for schizophrenia is likely related to higher basal sus-
piciousness, a heritable trait related to psychiatric disorders 
[22] which likely leads to a lower desire to agree to record 
linkage. However, the association between SCZ PRS and 
agreeing to PBS linkage did not reach statistical significance 
after adjusting for PCs. This could imply that residual strati-
fication underlies this association, but these results are also 
consistent with SCZ PRS being the least powered PRS in 
our study.

Similar research has proposed that participants with 
higher neuroticism scores and depression are less likely to 
participate in follow-up questionnaires. [9]. Participants with 
these characteristics may be more likely to experience feel-
ings of anger, anxiety, and irritability [23] when prompted 
with follow-up research surveys. In our study, individuals 
with higher neuroticism scores were more likely to consent 
to record linkage of their prescription history. We also report 
an association between neuroticism PRS and neuroticism 
score. However, the neuroticism PRS was not statistically 
associated with consent for record linkage. A similar result 
(i.e. phenotypic association, but no association between 
PRS and consent to record linkage) for Bipolar disorder was 
observed. This observation could be explained by the fact 
that these PRS do not capture all of the heritability for their 
traits and thus suffer from reduced power, but it may also 
imply that the relationship between these factors and consent 
to record linkage is mediated solely through non-genetic fac-
tors. We believe the latter scenario to be unlikely.

Participants reporting a lifetime diagnosis of bipolar dis-
order were more likely to consent to record linkage of their 
prescription history and less likely to provide a saliva sample 
for genotyping. Furthermore, genetic risk for depression was 
nominally associated with greater odds of consenting for 
record linkage, which is the reverse direction to the previous 
reports [9]. Participants who reported anorexia were less 
likely to consent to record linkage, but more likely to provide 
a biological specimen. This finding may be related to person-
ality characteristics linked to anorexia, such as behaviours 
in relation to losing control [24]; consenting to access to the 
clinical prescription history could be violating the concept 
of having control [25]. However, this explanation fails to 
explain the positive association with donating a biological 
specimen.

The lack of consistency between demographic and clini-
cal factors associated with consent for record linkage and 
donating a saliva sample, coupled with the results of other 
studies of participation and attrition, leads us to hypothesise 
that there is no single set of factors underlying attrition to 
different designs and settings. Evidence of differential fac-
tors in our study include the fact that previously reported 
negative predictors of participation, such as neuroticism and 
genetic risk for depression [9], were positively associated 
with consent to record linkage; that educational attainment 
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was associated with donating a saliva sample, but not with 
consent to record linkage and that a lifetime diagnosis of 
anorexia and substance use disorder were associated with 
both record linkage and saliva donation but with opposing 
effects. Overall, our results suggest participation biases to be 
specific to the design and nature of the study or follow-up. 
That is, there is no one-size fits all set of factors systemati-
cally driving participation across studies, but the possibility 
of a set of common factors cannot be ruled out.

It is important to highlight some limitations of this 
study. The diagnoses studied relied on participant self-
report, which could lower the reliability of these diagnoses; 
however, as mental health disorders are highly impactful, a 
participants' likelihood to accurately report the diagnoses 
communicated to them is high. Additionally, participants 
were informed of the period that would be covered by the 
record linkage and it is possible that participants who had 
not experienced a depressive episode in this timeframe 
were less likely to consent for record linkage (the previous 
4.5 years from recruitment). It is also important to note that 
only Australian citizens and permanent residents have access 
to the PBS system and we did not collect information on 
legal citizenship or resident status. Military personnel and 
their families do not use the MBS/PBS system. As such, 
non-residents and military personnel (and their families) 
would not be able to consent to PBS record linkage. The 
lack of evidence for association between a trait and par-
ticipation does not necessarily imply a lack of association. 
This is why we mention and report on nominally significant 
findings as well. Within the genetic analyses, we excluded 
participants of non-European ancestry to avoid population 
stratification. For this reason, care should be taken when 
generalising these findings to populations with other ances-
tral backgrounds even within this sample.

Our results show that phenotypic differences can be 
identified through differences in PRS. The effectiveness 
of this approach will depend on the heritability of the trait 
upon which selection took place, as well as the power of 
the PRS. There are multiple methods for deriving weights 
for PRS, although they are comparable, some methods may 
work better for specific traits depending on their genetic 
architecture. It is also important to acknowledge that PRS 
themselves could be affected by residual population strati-
fication and selection factors [26, 27]. Thus, a difference 
between PGS in a sample and a population-based reference 
may be reflective of either (1) a true correlation between 
the phenotype and participation (which is also detectable 
on the genetic level) or (2) residual stratification in the 
PGS, when it also differentiates the sample from the popu-
lation. We believe the former should make more sense as 
PRS gain power and new approaches to adjust for residual 
biases are developed. Using genetics to estimate and adjust 

for unobserved biases would be subject to important chal-
lenges such as the need for a highly powered PGS and the 
availability of a population reference sample. PRS may 
become a useful tool against attrition biases, but further 
developments are needed to achieve this.

Longitudinal studies with genotype data, such as the 
AGDS, enable us to identify these biases. Future stud-
ies leveraging the prescription data should consider these 
differences, and perform sensitivity analyses assessing 
whether their findings could be attributed to the traits 
identified herein. Most current epidemiological studies do 
not adjust nor search for attrition biases, let alone at the 
genetic level. The possibility to do so is a strength of sam-
ples such as the AGDS. An example of such an approach is 
a recent study identifying an unexpected positive genetic 
correlation between depression and cognitive traits. Fol-
low-up analyses suggested these results to be explained 
by the fact that the AGDS sample is also highly educated 
whereas the education levels of the controls were more 
concordant with the Australian population [28]. We argue 
that future analyses can be made more robust by identify-
ing biases both on the phenotypic and genetic level, and 
contextualising them as a potential limitation or perform-
ing sensitivity analyses adjusting for them.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s00406-​022-​01527-0.

Acknowledgements  Data collection for AGDS was possible 
thanks to funding from the Australian National Health & Medical 
Research Council (NHMRC) to NGM, NRW, SEM, IHB, EMB, PAL 
(GNT1086683) and Medical Research Future Fund (APP1200644). We 
thank our colleagues Richard Parker, Simone Cross, Scott Gordon and 
Lenore Sullivan for their valuable work coordinating all the administra-
tive and operational aspects of the AGDS project. NRW thanks the sup-
port of NHMRC through Grants 1113400 and 1173790. MER thanks 
the support of NHMRC and the Australian Research Council (ARC) 
through an NHMRC-ARC Dementia Research Development Fellow-
ship (GNT1102821). SEM is supported in part by NHMRC investigator 
Grant APP1172917. The views expressed are those of the authors and 
not necessarily those of the affiliated or funding institutions.

Author contributions  AIC and NGM designed the study. LG, SDT, 
LMGM, and CY performed the analyses with supervision and guid-
ance from AIC. EMB, PAL, NRW, SEM, IBH, and NGM implemented 
and supervised the data collection for the AGDS. LCC, LY, and MKL 
critically appraised the manuscript and gave input in the design and 
implementation of the analyses. LG, AIC, and MER contributed to the 
first draft of the manuscript and all authors contributed to editing and 
drafting the manuscript prior to submission.

Data availability  Summary statistics used for PGS are publicly avail-
able as described in their respective publications (see methods). Sum-
maries of associations are provided with this manuscript in the main 
text or supplementary materials. Access to the AGDS data is restricted 
due to the ethical guidelines governing the study, but may be accessible 
following ethical review and data transfer agreements, please contact 
Nicholas Martin (nick.martin@qimrberghofer.edu.au) with any queries 
related to accessing AGDS data.

https://doi.org/10.1007/s00406-022-01527-0


1368	 European Archives of Psychiatry and Clinical Neuroscience (2023) 273:1359–1368

1 3

Declarations 

Competing interests  Professor Ian Hickie is the Co-Director, Health 
and Policy at the Brain and Mind Centre (BMC) University of Sydney, 
Australia. The BMC operates an early-intervention youth services at 
Camperdown under contract to headspace. Professor Hickie has pre-
viously led community-based and pharmaceutical industry-supported 
(Wyeth, Eli Lily, Servier, Pfizer, AstraZeneca) projects focused on the 
identification and better management of anxiety and depression. He 
is the Chief Scientific Advisor to, and a 5% equity shareholder in, 
InnoWell Pty Ltd. InnoWell was formed by the University of Sydney 
(45% equity) and PwC (Australia; 45% equity) to deliver the $30 M 
Australian Government-funded Project Synergy (2017-20) and to lead 
transformation of mental health services internationally through the 
use of innovative technologies. LG, SDT, LCC, LMGM, CY, EMB, 
LY, PAL, NRW, SEM, IBH, MKL, MER, NGM and AIC have nothing 
to disclose.

References

	 1.	 Byrne EM et al (2020) Cohort profile: the Australian genetics of 
depression study. BMJ Open 10(5):e032580

	 2.	 Oswald LM et al (2013) Volunteerism and self-selection bias in 
human positron emission tomography neuroimaging research. 
Brain Imaging Behav 7(2):163–176

	 3.	 Patten SB (2000) Selection bias in studies of major depression 
using clinical subjects. J Clin Epidemiol 53(4):351–357

	 4.	 Day FR et al (2016) A robust example of collider bias in a genetic 
association study. Am J Hum Genet 98(2):392–393

	 5.	 Griffith GJ et al (2020) Collider bias undermines our under-
standing of COVID-19 disease risk and severity. Nat Commun 
11(1):5749

	 6.	 Keyes KM, Westreich D (2019) UK Biobank, big data, and the 
consequences of non-representativeness. Lancet 393(10178):1297

	 7.	 Pirastu N et al (2021) Genetic analyses identify widespread sex-
differential participation bias. Nat Genet 53(5):663–671

	 8.	 Adams MJ et al (2020) Factors associated with sharing e-mail 
information and mental health survey participation in large popu-
lation cohorts. Int J Epidemiol 49(2):410–421

	 9.	 Tyrrell J et al (2021) Genetic predictors of participation in optional 
components of UK Biobank. Nat Commun 12(1):886

	10.	 Stamatakis E et al (2021) Is cohort representativeness Passé? Post-
stratified associations of lifestyle risk factors with mortality in the 
UK Biobank. Epidemiology (Cambridge) 32(2):179

	11.	 Yang J et al (2011) GCTA: a tool for genome-wide complex trait 
analysis. Am J Hum Genet 88(1):76–82

	12.	 Yang J et al (2010) Common SNPs explain a large proportion of 
the heritability for human height. Nat Genet 42(7):565–569

	13.	 Lee JJ et al (2018) Gene discovery and polygenic prediction from 
a genome-wide association study of educational attainment in 1.1 
million individuals. Nat Genet 50(8):1112–1121

	14.	 Nagel M et al (2018) Meta-analysis of genome-wide association 
studies for neuroticism in 449,484 individuals identifies novel 
genetic loci and pathways. Nat Genet 50(7):920–927

	15.	 Howard DM et al (2019) Genome-wide meta-analysis of depres-
sion identifies 102 independent variants and highlights the impor-
tance of the prefrontal brain regions. Nat Neurosci 22(3):343–352

	16.	 Stahl EA et al (2019) Genome-wide association study identifies 
30 loci associated with bipolar disorder. Nat Genet 51(5):793–803

	17.	 Pardiñas AF et  al (2018) Common schizophrenia alleles are 
enriched in mutation-intolerant genes and in regions under strong 
background selection. Nat Genet 50(3):381–389

	18.	 Watson HJ et al (2019) Genome-wide association study identi-
fies eight risk loci and implicates metabo-psychiatric origins for 
anorexia nervosa. Nat Genet 51(8):1207–1214

	19.	 Lloyd-Jones LR et al (2019) Improved polygenic prediction by 
Bayesian multiple regression on summary statistics. Nat Commun 
10(1):5086

	20.	 Purcell S et al (2007) PLINK: a tool set for whole-genome asso-
ciation and population-based linkage analyses. Am J Hum Genet 
81(3):559–575

	21.	 Huang JY (2021) Representativeness is not representative: 
addressing major inferential threats in the UK Biobank and other 
big data repositories. Epidemiology 32(2):189–193

	22.	 Kendler KS, Heath A, Martin NG (1987) A genetic epidemio-
logic study of self-report suspiciousness. Compr Psychiatry 
28(3):187–196

	23.	 Widiger TA, Oltmanns JR (2017) Neuroticism is a fundamental 
domain of personality with enormous public health implications. 
World Psychiatry 16(2):144–145

	24.	 Kaye Walter H, Weltzin T, Hsu LKG (1993) Relationship between 
anorexia nervosa and obsessive and compulsive behaviors. Psy-
chiatr Ann 23(7):365–373

	25.	 Boraska V et al (2014) A genome-wide association study of ano-
rexia nervosa. Mol Psychiatry 19(10):1085–1094

	26.	 Haworth S et al (2019) Apparent latent structure within the UK 
Biobank sample has implications for epidemiological analysis. 
Nat Commun 10(1):1–9

	27.	 Zaidi AA, Mathieson I (2020) Demographic history mediates the 
effect of stratification on polygenic scores. Elife 9:e61548

	28.	 Mitchell BL et al (2021) The Australian genetics of depression 
study: new risk loci and dissecting heterogeneity between sub-
types. Biol Psychiatry 92:227–235

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.


	Phenotypic and genetic factors associated with donation of DNA and consent to record linkage for prescription history in the Australian Genetics of Depression Study
	Abstract
	Introduction
	Methods
	Sample recruitment
	Genotyping imputation and quality control
	SNP-based heritability
	Polygenic risk scores (PRS)
	Illustrating-biased associations in the AGDS
	Statistical analyses

	Results
	Demographic factors and samples description
	Associations with psychiatric and personality traits
	Genetic factors
	Simulation of a collider for anorexia

	Discussion
	Anchor 17
	Acknowledgements 
	References




